【菜科解读】
行星是天体的一类,是指自身不发光,同时围绕太阳做周期性公转运动的天体,通常可以分为行星、矮行星和小行星。
比如在太阳系内,水星、金星、地球、火星、木星、土星、天王星和海王星就是属于行星,而冥王星,则和谷神星、阋神星、鸟神星等一起属于矮行星。

穿越木星
在太阳系内,位于火星和木星轨道之间还存在着数以十万计的小行星,我们称为小行星带。
当然,我们人类最为关注的还是八大行星,我们根据八大行星的物理性状可以分为两类,一类是和地球一样具有固体表面,岩石行星,称为类地行星,包括水星、金星和火星。
太阳系示意图
另外一类就是和木星一样,是有气体来组成的行星,在太阳系内包括木星、土星、天王星和海王星,这些行星和类地行星来比,通常具有体积和质量更大,但是由于是气体组成,所以往往平均密度较小。
那么,既然木星是气态行星,那么我们人类发射的航天器,包括宇宙探测器,或者将来有可能发射的宇宙飞船,能不能直接穿过木星?

太阳系八大行星
目前来看,人类发射的航天器很难穿越木星,我们这里假设我们从木星的中心穿过。
虽然木星是一颗气态行星,那只是表明木星的主要组成成分是气体,主要是氢和氦,从木星的结构来看,最外面是包围整个木星的大气层,充满着气体,而且在不停的运动之中,形成气体旋涡,比如著名的“大红斑”。
木星南极洲
而在木星大气层之下,随着越往木星内部,压力越来越大,气体被不断压缩,形成了液态金属氢,这需要的压力相当于25万个地球大气压,我们要用什么材料才干承受这种压力呢?如果再往木星内部前进,到了木星的中心,我们猜测虽然木星是一颗气态行星,但是其中心是有一个岩石核心,由硅酸盐和铁来组成。
所以在物体状态下,木星内部的高温、高压,以及岩石内核都不支持航天器穿越它。
木星内部结构
木星在行星分类上,是一颗气态行星,但是这里的气态,并不是我们地球上所想象的像我们的大气层一样的气体。
我们知道,就算是地球上的大气层,当天宫一号从宇宙坠落,经过大气层时,也会因为剧烈摩擦而燃烧,更何况是更为稠密的木星大气层,所以,以目前的人类技术,别说穿越木星,连木星大气层这一关都过不了。

木星探测器“朱诺号”
人类的认知是有限的,我们只能在现有的条件下进行假设,就像农业社会时期的人类,也无法想象现在的互联网时代。
那么,我们说无法穿越木星,也是基于当前的认知,说不定在将来,人类科技进步,就能实现。
朱诺号发射升空
球粒陨石可根据岩石结构、矿物及全岩成分、同位素组成特征分为不同的亚类,可分为:普通球粒陨石、碳质球粒陨石、顽辉石球粒陨石、K型球粒陨石、R型球粒陨石。
Eagle (EL6)顽辉球粒陨石 科学研究认为,不同的亚类球粒陨石来源不同的小行星母体,暗示了陨石母体形成阶段成分及热力学环境的不同。
球粒陨石所含主要矿物为橄榄石和辉石,次要矿物为长石、铁纹石、镍纹石和陨硫铁;
其中普通球粒陨石根据所含金属矿物的多少分为高铁H型球粒陨石、低铁L型球粒陨石、更低金属LL型球粒陨石;
Northeast Africa 071碳质球粒陨石 (CBb) 碳质球粒陨石根据岩性、金属含量、球粒、难熔包体等等 分为:CI型、CM型、CO型、CV型、CK型、CR型、CH型、CB型,8个类型,其中每个类型有其的独特性,如CB型碳质球粒陨石所含铁镍金属颗粒很高,切面可肉眼看到明显的大的金属球粒状,而CM型碳质球粒陨石却几乎不含铁镍金属矿物;
顽辉球粒陨石是一组还原程度太高的球粒陨石,含有大量金属矿物颗粒,并含有特征矿物陨硫钙矿,根据铁含量的高低,细分为EH型(高铁)与EL型(低铁)两个类别;
Awsserd R型球粒陨石 R型球粒陨石是一类氧化程度较高的球粒陨石,大多数R型球粒陨石经历不同程度的热变质,不含金属矿物颗粒,主要矿物为橄榄石,橄榄石中的镍含量较高;
K型球粒陨石属于未分组球粒陨石,含有球粒,球粒中的主要矿物是橄榄石和辉石,含有金属颗粒,主要是铁纹石和镍纹石。
Kakangari K型球粒陨石 本文藏品图片来自网络,版权归原作者所有,如侵联删;
文章来自中历收藏品鉴定中心,2014年成立,为我国合法的独立的第三方专业鉴定机构,专注鉴定服务,不参与任何交易,对陨石鉴定采用仪器无损化学成分分析,并将分析结果与国家科研确认的各陨石数据比对,综合陨石各形态结构特征,从而准确科学得出是否陨石,是哪类陨石,并根据陨石品种做相应的参考价格评估,过程公开透明,藏家可全程参与,证书得到了专业人士及社会各界的高度认可,陨石鉴定可咨询。
模拟结果表明,地球生态系统的根本性瓦解预计将在约100亿年后发生,即大约公元10000022021年。
到那时,太阳持续增强的辐射将导致地表温度不断升高,液态水彻底蒸发,所有已知生命形式因无法适应极端高温而走向终结。
研究人员指出,这一时间节点远远超出人类文明可能延续的时间范围,因此公众无需对此产生焦虑。
相较而言,人类或将面临更为紧迫的生存风险。
尽管此次研究并未预测人类灭绝的具体时间,但科学界普遍认为,气候变化、自然资源耗竭以及小行星撞击等潜在危机,可能在数百年甚至更短时间内对人类社会构成重大威胁。
与蟑螂、老鼠等具备高度环境适应能力的生物相比,人类在面对剧烈环境变化时表现出更大的脆弱性。
研究同时也释放出积极信息:生态系统的崩溃是一个极其缓慢的过程,这为人类争取了充足的应对时间。
然而值得注意的是,当前人类活动正在显著加剧地球系统的负担。
温室气体排放引发的全球变暖、极地冰盖加速消融等现象,其发展速度已超出早期科学模型的预估,可能导致环境恶化提前于自然演化的时间表到来。
面对这一不可逆转的长期趋势,科学界呼吁尽早制定并实施应对策略。
在短期内,应重点推进密闭式生命维持系统和人工生态技术的研发,以提升地球宜居环境的韧性与可持续性;
从长远角度出发,向地外空间拓展将成为保障人类延续的关键路径。
目前,相关机构正持续推动深空探索与行星移民技术的发展,致力于在地球之外建立可长期居住的新型生存空间。
返回搜狐,查看更多
地球的孪生兄弟:生存环境比木星还恶劣