【菜科解读】
早期太阳系的原行星盘中有一个明显的缺口 是支配行星形成过程的一个标志

据cnBeta:大约45亿年前,年轻的太阳就像现在一样闪闪发光,尽管它比现在小一点。
它没有被行星所包围,而是被包裹在一个旋转的气体和尘埃盘中。
这个盘被称为原行星盘,它是行星最终形成的地方。
在早期太阳系的原行星盘中,在火星和木星现在所在的位置与现代小行星带所在的位置之间,有一个明显的缺口。
究竟是什么造成了这个缺口,这是一个谜,但天文学家认为这是支配行星形成的过程的一个标志。
一组科学家已经发表了一篇论文,概述了这一古老缺口的发现。
研究主要作者是Cauê Borlina,他是麻省理工学院(MIT)地球、大气和行星科学系(EAPS)的行星科学博士生。
这篇论文已发表在《科学进展》杂志上。
由于像阿塔卡马大型毫米波/亚毫米波阵列(ALMA)这样的设施,天文学家越来越善于观察类似于太阳系年轻版本的恒星系统,这些恒星系统仍有原行星盘,仍在形成行星。
它们往往有明显的空隙和环,是行星形成的证据。
但是这一切究竟是如何进行的,仍然是一个谜。
“在过去的十年中,观察结果表明,空洞、间隙和环在其他年轻恒星周围的盘中很常见,”研究报告的共同作者、麻省理工学院地球、大气和行星科学系(EAPS)的行星科学教授 Benjamin Weiss说。
“这些是气体和尘埃转变为年轻恒星和行星的物理过程的重要但不为人知的特征。
”
而我们自己的太阳系原行星盘在大约45亿年前出现缺口的证据来自对陨石的研究。
太阳系的磁场对陨石的结构产生了影响。
古地磁塑造了原行星盘中被称为球粒的微小岩石。
球粒是熔化或部分熔化的圆石片,成为一种叫做球粒陨石的陨石的增生。
而球粒陨石是太阳系中最古老的一些岩石。
随着球粒的冷却,它们保留了当时的磁场记录。
这些磁场随着时间的推移,随着原行星盘的演变而变化。
根据当时磁场的性质,球粒中电子的方向是不同的。
总的来说,所有球粒陨石的球粒都讲述了一个故事。

在这项研究中,该小组分析了在南极洲发现的两块碳质陨石的球粒。
他们使用了一种叫做超导量子干涉装置(SQUID)的设备。
SQUID是一种用于地质样品的高灵敏度、高分辨率的磁强计。
研究小组使用SQUID来确定陨石中每个球粒的古代原始磁场。
这项研究也是基于一种叫做同位素二分法的现象。
有两个独立的陨石“家族”落到地球上,每个“家族”都有不同的同位素组成,科学家们得出结论,这两个“家族”一定是在早期太阳系的不同时间和地点形成的。
这两种类型被称为碳质(CC)和非碳质(NC)。
CC陨石可能含有来自外太阳系的物质,而NC陨石可能含有来自内太阳系的物质。
有些陨石同时含有两种同位素指纹,但这是非常罕见的。
该小组研究的两块陨石都是来自外太阳系的CC型陨石。
当他们对它们进行分析时,他们发现球粒显示出比他们之前分析的NC陨石更强的磁场。
这与天文学家认为在年轻太阳系中发生的情况相反。
随着一个年轻系统的演变,科学家们预计磁场会随着与太阳的距离衰减。
磁性强度可以用被称为微特斯拉的单位来测量,CC球粒显示的磁场约为100微特斯拉,而NC球粒显示的强度只有50微特斯拉。
作为比较,今天地球的磁场约为50微特斯拉。
磁场表明太阳系是如何吸纳物质的。
磁场越强大,它能吸纳的物质就越多。
在CC陨石的球粒中明显的强磁场表明,太阳系外部比内部区域吸纳更多的物质,这一点从行星的大小可以看出。
这篇论文的作者总结说,这是一个大缺口的证据,它以某种方式阻止了物质流入内太阳系。
"缺口在原行星系统中很常见,我们现在表明,我们在自己的太阳系中有一个缺口,"Borlina说。
"这给出了我们在陨石中看到的这种奇怪的二分法的答案,并提供了差距影响行星组成的证据。
"
这一切结合起来成为早期太阳系中一个巨大的、无法解释的缺口的有力证据。

木星是迄今为止质量最大的行星,所以它是一个很好的地方,可以开始了解这一切是如何在我们的太阳系中发生的。
随着木星的成长,其强大的引力可能起到了一定的作用。
它可能将气体和尘埃从太阳系内部扫向外围,在它和火星之间的演化盘中留下了一个缺口。
另一个可能的解释来自于圆盘本身。
早期的圆盘是由其自身强大的磁场形成的。
当这些磁场相互作用时,它们会产生强大的风,可以使物质移位并形成一个缺口。
木星的引力和原行星的磁场可能结合在一起,形成了这个缺口。
但是,是什么造成了这个缺口,这只是一个问题。
另一个问题是它发挥了什么作用?自从40多亿年前形成以来,它是如何帮助塑造万物的?根据这篇论文,缺口本身可能起到了不可逾越的屏障作用,使来自两侧的物质无法相互作用。
缝隙内部是陆地行星,缝隙外部是气态世界。
“穿越这个缺口是相当困难的,一颗行星需要大量的外部扭矩和动量,”主要作者Cauê Borlina在一份新闻稿中说。
“因此,这提供了证据,表明我们的行星的形成被限制在早期太阳系的特定区域。
”
它来自遥远的银河系,正向地球飞驰而来,被确认为一枚星际天体。
外观与构成:彗核大小半径约1千米,外表发红,主要由尘埃构成。
这些特征与太阳系内形成的彗星相符,说明形成于太阳系外的彗星也可能与太阳系内彗星特征相似。
与Oumuamua彗星的对比:Oumuamua彗星是人类于两年前观测到的首枚星际天体,其样子与其他天体迥然不同,缺乏人们熟悉的彗发和彗尾。
而鲍里索夫彗星则与太阳系内的彗星极其相似,这显示了星际天体的多样性。
观测与研究观测手段:天文学家们使用位于西班牙拉帕尔玛的威廉·赫歇耳望远镜以及位于夏威夷的北双子座望远镜为鲍里索夫彗星拍下了照片,这些照片为我们提供了关于彗星外观和构成的重要信息。
研究成果:天文学家团队发表的研究成果详细描述了鲍里索夫彗星的特征,这些特征与太阳系内彗星相符,为我们理解星际天体提供了新的视角。
对行星构成的启示彗星与行星构成的关系:科学家认为,彗星是由太阳系形成过程中的剩余物质构成的,其中一些碎片来自构成行星的基础物质。
因此,观测星际天体有助于我们理解行星的最初成因。
研究意义:通过观测太阳系以外的彗星,我们可以更加了解其他星系是否与我们所在的太阳系有着相同的构成。
鲍里索夫彗星的发现为我们提供了一个研究星际天体和行星构成的独特机会。
未来展望更多星际天体的发现:随着天空观测技术的进步,科学家们预测将平均每年探测到一枚星际天体。
这将为我们提供更多关于星际天体和行星构成的信息。
建立数据库:随着更多星际天体的发现,科学家们将建立起一个数据库,这将有助于我们更深入地理解星际天体的性质和行星构成的模式。
球粒陨石可根据岩石结构、矿物及全岩成分、同位素组成特征分为不同的亚类,可分为:普通球粒陨石、碳质球粒陨石、顽辉石球粒陨石、K型球粒陨石、R型球粒陨石。
Eagle (EL6)顽辉球粒陨石 科学研究认为,不同的亚类球粒陨石来源不同的小行星母体,暗示了陨石母体形成阶段成分及热力学环境的不同。
球粒陨石所含主要矿物为橄榄石和辉石,次要矿物为长石、铁纹石、镍纹石和陨硫铁;
其中普通球粒陨石根据所含金属矿物的多少分为高铁H型球粒陨石、低铁L型球粒陨石、更低金属LL型球粒陨石;
Northeast Africa 071碳质球粒陨石 (CBb) 碳质球粒陨石根据岩性、金属含量、球粒、难熔包体等等 分为:CI型、CM型、CO型、CV型、CK型、CR型、CH型、CB型,8个类型,其中每个类型有其的独特性,如CB型碳质球粒陨石所含铁镍金属颗粒很高,切面可肉眼看到明显的大的金属球粒状,而CM型碳质球粒陨石却几乎不含铁镍金属矿物;
顽辉球粒陨石是一组还原程度太高的球粒陨石,含有大量金属矿物颗粒,并含有特征矿物陨硫钙矿,根据铁含量的高低,细分为EH型(高铁)与EL型(低铁)两个类别;
Awsserd R型球粒陨石 R型球粒陨石是一类氧化程度较高的球粒陨石,大多数R型球粒陨石经历不同程度的热变质,不含金属矿物颗粒,主要矿物为橄榄石,橄榄石中的镍含量较高;
K型球粒陨石属于未分组球粒陨石,含有球粒,球粒中的主要矿物是橄榄石和辉石,含有金属颗粒,主要是铁纹石和镍纹石。
Kakangari K型球粒陨石 本文藏品图片来自网络,版权归原作者所有,如侵联删;
文章来自中历收藏品鉴定中心,2014年成立,为我国合法的独立的第三方专业鉴定机构,专注鉴定服务,不参与任何交易,对陨石鉴定采用仪器无损化学成分分析,并将分析结果与国家科研确认的各陨石数据比对,综合陨石各形态结构特征,从而准确科学得出是否陨石,是哪类陨石,并根据陨石品种做相应的参考价格评估,过程公开透明,藏家可全程参与,证书得到了专业人士及社会各界的高度认可,陨石鉴定可咨询。