【菜科解读】
在太阳系已知的八颗行星中,海王星的发现历程颇为有趣,因为其它的行星都是天文学家直接观测到的,而海王星的发现则是天文学家通过观测到的现象推测出来的,所以海王星也常被人们称为笔尖上的行星。
简单来讲就是,天文学家在观测天文星的运动轨迹时发现,实际观测到天王星的运动轨迹,与通过牛顿万有引力定律计算出来的结果出现了不可忽视的差异,然后就怀疑天王星应该是受到了一颗距离太阳更远的行星的引力干扰。
在经过一系列复杂的计算之后,天文学家首先推测出了海王星在某个时刻出现的准确位置,接下来,人们真的在这个位置上观测到了这颗行星(实际位置和推测位置的偏差不超过1度),从而确定了海王星的存在。
海王星是八大行星中距离太阳最远的一颗行星,其公转轨道比较接近圆形,远日点距离太阳约30.33个天文单位,近日点距离太阳约29.81个天文单位。
要知道一个天文单位约为1.5亿公里(即地球和太阳之间的平均距离),因此我们完全可以推测出,在海王星上看到的太阳肯定比在地球上看到的太阳更小,也更暗。
那么问题来了,在海王星上看太阳,太阳有多大?又有多亮呢?尽管我们暂时还无法亲自到海王星上看太阳,但根据已有的天文知识,我们还是可以计算出具体的数据。
在海王星上看到的太阳有多大?由于一个天体距离观测者越远,它在观测者眼中就显得越小,反之亦然,因此在天文学中通常用视角这个参数来描述天体在观测者眼中的大小。
如上图所示,视角(θ)与天体的直径(d)以及天体与观测者之间的距离(L)存在着确定的几何关系,具体可用tan θ/2 = 0.5d/L来进行描述,据此可得:θ= 2arctan(0.5d/L)。
我们将太阳的直径(1.392 x 10^6千米)以及海王星与太阳的平均距离(30个天文单位,约为45亿公里)代入上述公式,就可计算出,在海王星上看太阳的视角约为1.06角分。
通过同样的方法,我们也可以计算出在地球上看太阳的视角约为0.53度,1度等于60角分,据此我们就可以得出,在海王星上看太阳的视角只有地球上看太阳的30分之1。
对此,我们可以简单理解为,在海王星上看到的太阳直径只有地球上的30分之1,面积只有900分之1。
在海王星上看到的太阳有多亮?在天文学中,通常用视星等这个参数来描述观测者用肉眼所看到的天体亮度,与之对应的还有绝对星等,所谓绝对星等,是指假设把天体放在距离观测者10秒差距(约32.616光年)的位置上所测得的亮度。
视星等(m)与绝对星等(M)都可以为负数,其数值越小,天体的亮度就越高,它们之间的转化公式为 m = M - 5 x log10(d0/d),其中d0为10秒差距,d为观测者与天体之间的距离。
已知太阳的绝对星等为4.83等,我们将相关数据代入公式就可以计算出,在海王星上看太阳的视星等约为-19.4等,而在地球上看太阳的视星等约为-26.71等。
视星等的数值每相差1,亮度就会相差2.512倍,由此可得,海王星上看到的太阳亮度只有地球上的大约840分之1。
需要注意的是,我们地球上看到的满月视星等约为-13等,简单换算一下就可知,海王星上看到的太阳亮度是满月亮度的大约363倍,其亮度还是蛮高的。
模拟图上图为研究者利用计算机模拟程序绘制出的模拟图,可以看到,太阳不愧为太阳系中的老大,即使遥远如海王星,太阳发出的光芒依然能够将其照亮。
值得一提的是,海王星是一颗冰巨星,人类想要直接站在海王星上是不太现实的,不过海王星还有10多颗具备固体表面的天然卫星可供人类登陆,而海卫一则是最佳选择。
海卫一是海王星众多卫星中最大的一颗,观测数据表明,海卫一的外壳主要由水冰构成,其表面覆盖着大量的处于冰冻状态的氮,并且还有较为活跃的冰火山,所以在未来的某一天,当人类在海卫一登陆时,可能会看到上图这种场景。
好了,今天我们就先讲到这里,欢迎大家关注我们,我们下次再见。
球粒陨石可根据岩石结构、矿物及全岩成分、同位素组成特征分为不同的亚类,可分为:普通球粒陨石、碳质球粒陨石、顽辉石球粒陨石、K型球粒陨石、R型球粒陨石。
Eagle (EL6)顽辉球粒陨石 科学研究认为,不同的亚类球粒陨石来源不同的小行星母体,暗示了陨石母体形成阶段成分及热力学环境的不同。
球粒陨石所含主要矿物为橄榄石和辉石,次要矿物为长石、铁纹石、镍纹石和陨硫铁;
其中普通球粒陨石根据所含金属矿物的多少分为高铁H型球粒陨石、低铁L型球粒陨石、更低金属LL型球粒陨石;
Northeast Africa 071碳质球粒陨石 (CBb) 碳质球粒陨石根据岩性、金属含量、球粒、难熔包体等等 分为:CI型、CM型、CO型、CV型、CK型、CR型、CH型、CB型,8个类型,其中每个类型有其的独特性,如CB型碳质球粒陨石所含铁镍金属颗粒很高,切面可肉眼看到明显的大的金属球粒状,而CM型碳质球粒陨石却几乎不含铁镍金属矿物;
顽辉球粒陨石是一组还原程度太高的球粒陨石,含有大量金属矿物颗粒,并含有特征矿物陨硫钙矿,根据铁含量的高低,细分为EH型(高铁)与EL型(低铁)两个类别;
Awsserd R型球粒陨石 R型球粒陨石是一类氧化程度较高的球粒陨石,大多数R型球粒陨石经历不同程度的热变质,不含金属矿物颗粒,主要矿物为橄榄石,橄榄石中的镍含量较高;
K型球粒陨石属于未分组球粒陨石,含有球粒,球粒中的主要矿物是橄榄石和辉石,含有金属颗粒,主要是铁纹石和镍纹石。
Kakangari K型球粒陨石 本文藏品图片来自网络,版权归原作者所有,如侵联删;
文章来自中历收藏品鉴定中心,2014年成立,为我国合法的独立的第三方专业鉴定机构,专注鉴定服务,不参与任何交易,对陨石鉴定采用仪器无损化学成分分析,并将分析结果与国家科研确认的各陨石数据比对,综合陨石各形态结构特征,从而准确科学得出是否陨石,是哪类陨石,并根据陨石品种做相应的参考价格评估,过程公开透明,藏家可全程参与,证书得到了专业人士及社会各界的高度认可,陨石鉴定可咨询。
模拟结果表明,地球生态系统的根本性瓦解预计将在约100亿年后发生,即大约公元10000022021年。
到那时,太阳持续增强的辐射将导致地表温度不断升高,液态水彻底蒸发,所有已知生命形式因无法适应极端高温而走向终结。
研究人员指出,这一时间节点远远超出人类文明可能延续的时间范围,因此公众无需对此产生焦虑。
相较而言,人类或将面临更为紧迫的生存风险。
尽管此次研究并未预测人类灭绝的具体时间,但科学界普遍认为,气候变化、自然资源耗竭以及小行星撞击等潜在危机,可能在数百年甚至更短时间内对人类社会构成重大威胁。
与蟑螂、老鼠等具备高度环境适应能力的生物相比,人类在面对剧烈环境变化时表现出更大的脆弱性。
研究同时也释放出积极信息:生态系统的崩溃是一个极其缓慢的过程,这为人类争取了充足的应对时间。
然而值得注意的是,当前人类活动正在显著加剧地球系统的负担。
温室气体排放引发的全球变暖、极地冰盖加速消融等现象,其发展速度已超出早期科学模型的预估,可能导致环境恶化提前于自然演化的时间表到来。
面对这一不可逆转的长期趋势,科学界呼吁尽早制定并实施应对策略。
在短期内,应重点推进密闭式生命维持系统和人工生态技术的研发,以提升地球宜居环境的韧性与可持续性;
从长远角度出发,向地外空间拓展将成为保障人类延续的关键路径。
目前,相关机构正持续推动深空探索与行星移民技术的发展,致力于在地球之外建立可长期居住的新型生存空间。
返回搜狐,查看更多